Copied to
clipboard

G = C12.95S32order 432 = 24·33

15th non-split extension by C12 of S32 acting via S32/C3⋊S3=C2

metabelian, supersoluble, monomial

Aliases: C12.95S32, C335Q89C2, (C3×C12).171D6, C3320(C4○D4), C339D413C2, C3⋊Dic3.47D6, C35(D6.D6), C3214(C4○D12), C4.8(C324D6), (C32×C6).67C23, (C32×C12).74C22, C6.96(C2×S32), (C12×C3⋊S3)⋊2C2, (C4×C3⋊S3)⋊12S3, (C2×C3⋊S3).47D6, (C6×C3⋊S3).58C22, C2.5(C2×C324D6), (C3×C6).117(C22×S3), (C3×C3⋊Dic3).46C22, SmallGroup(432,689)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C12.95S32
C1C3C32C33C32×C6C6×C3⋊S3C339D4 — C12.95S32
C33C32×C6 — C12.95S32
C1C4

Generators and relations for C12.95S32
 G = < a,b,c,d,e | a12=b3=c2=d3=1, e2=a6, ab=ba, cac=eae-1=a5, ad=da, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=a6c, ede-1=d-1 >

Subgroups: 1064 in 214 conjugacy classes, 47 normal (8 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C32, C32, Dic3, C12, C12, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C3×C12, S3×C6, C2×C3⋊S3, C4○D12, C3×C3⋊S3, C32×C6, D6⋊S3, C3⋊D12, C322Q8, S3×C12, C4×C3⋊S3, C3×C3⋊Dic3, C32×C12, C6×C3⋊S3, D6.D6, C339D4, C335Q8, C12×C3⋊S3, C12.95S32
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, C4○D12, C2×S32, C324D6, D6.D6, C2×C324D6, C12.95S32

Smallest permutation representation of C12.95S32
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 5 9)(2 6 10)(3 7 11)(4 8 12)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 33 29)(26 34 30)(27 35 31)(28 36 32)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 23)(2 16)(3 21)(4 14)(5 19)(6 24)(7 17)(8 22)(9 15)(10 20)(11 13)(12 18)(25 48)(26 41)(27 46)(28 39)(29 44)(30 37)(31 42)(32 47)(33 40)(34 45)(35 38)(36 43)
(1 9 5)(2 10 6)(3 11 7)(4 12 8)(13 17 21)(14 18 22)(15 19 23)(16 20 24)(25 29 33)(26 30 34)(27 31 35)(28 32 36)(37 45 41)(38 46 42)(39 47 43)(40 48 44)
(1 48 7 42)(2 41 8 47)(3 46 9 40)(4 39 10 45)(5 44 11 38)(6 37 12 43)(13 29 19 35)(14 34 20 28)(15 27 21 33)(16 32 22 26)(17 25 23 31)(18 30 24 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,23)(2,16)(3,21)(4,14)(5,19)(6,24)(7,17)(8,22)(9,15)(10,20)(11,13)(12,18)(25,48)(26,41)(27,46)(28,39)(29,44)(30,37)(31,42)(32,47)(33,40)(34,45)(35,38)(36,43), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,48,7,42)(2,41,8,47)(3,46,9,40)(4,39,10,45)(5,44,11,38)(6,37,12,43)(13,29,19,35)(14,34,20,28)(15,27,21,33)(16,32,22,26)(17,25,23,31)(18,30,24,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,5,9)(2,6,10)(3,7,11)(4,8,12)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,33,29)(26,34,30)(27,35,31)(28,36,32)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,23)(2,16)(3,21)(4,14)(5,19)(6,24)(7,17)(8,22)(9,15)(10,20)(11,13)(12,18)(25,48)(26,41)(27,46)(28,39)(29,44)(30,37)(31,42)(32,47)(33,40)(34,45)(35,38)(36,43), (1,9,5)(2,10,6)(3,11,7)(4,12,8)(13,17,21)(14,18,22)(15,19,23)(16,20,24)(25,29,33)(26,30,34)(27,31,35)(28,32,36)(37,45,41)(38,46,42)(39,47,43)(40,48,44), (1,48,7,42)(2,41,8,47)(3,46,9,40)(4,39,10,45)(5,44,11,38)(6,37,12,43)(13,29,19,35)(14,34,20,28)(15,27,21,33)(16,32,22,26)(17,25,23,31)(18,30,24,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,5,9),(2,6,10),(3,7,11),(4,8,12),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,33,29),(26,34,30),(27,35,31),(28,36,32),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,23),(2,16),(3,21),(4,14),(5,19),(6,24),(7,17),(8,22),(9,15),(10,20),(11,13),(12,18),(25,48),(26,41),(27,46),(28,39),(29,44),(30,37),(31,42),(32,47),(33,40),(34,45),(35,38),(36,43)], [(1,9,5),(2,10,6),(3,11,7),(4,12,8),(13,17,21),(14,18,22),(15,19,23),(16,20,24),(25,29,33),(26,30,34),(27,31,35),(28,32,36),(37,45,41),(38,46,42),(39,47,43),(40,48,44)], [(1,48,7,42),(2,41,8,47),(3,46,9,40),(4,39,10,45),(5,44,11,38),(6,37,12,43),(13,29,19,35),(14,34,20,28),(15,27,21,33),(16,32,22,26),(17,25,23,31),(18,30,24,36)]])

54 conjugacy classes

class 1 2A2B2C2D3A3B3C3D···3H4A4B4C4D4E6A6B6C6D···6H6I···6N12A···12F12G···12P12Q···12V
order122223333···3444446666···66···612···1212···1212···12
size111818182224···4111818182224···418···182···24···418···18

54 irreducible representations

dim1111222222444444
type++++++++++
imageC1C2C2C2S3D6D6D6C4○D4C4○D12S32C2×S32C324D6D6.D6C2×C324D6C12.95S32
kernelC12.95S32C339D4C335Q8C12×C3⋊S3C4×C3⋊S3C3⋊Dic3C3×C12C2×C3⋊S3C33C32C12C6C4C3C2C1
# reps13133333212332624

Matrix representation of C12.95S32 in GL6(𝔽13)

110000
1200000
0012000
0001200
000080
000008
,
100000
010000
00121200
001000
000010
000001
,
100000
12120000
001000
00121200
0000114
000092
,
100000
010000
001000
000100
0000012
0000112
,
100000
12120000
001000
000100
000085
000005

G:=sub<GL(6,GF(13))| [1,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,11,9,0,0,0,0,4,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,5,5] >;

C12.95S32 in GAP, Magma, Sage, TeX

C_{12}._{95}S_3^2
% in TeX

G:=Group("C12.95S3^2");
// GroupNames label

G:=SmallGroup(432,689);
// by ID

G=gap.SmallGroup(432,689);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,141,58,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^12=b^3=c^2=d^3=1,e^2=a^6,a*b=b*a,c*a*c=e*a*e^-1=a^5,a*d=d*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^6*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽